
Programming for Professional

Research Using R

Session 4

April 17, 2025

1

Today

Learn how to:

Create custom functions
Use iterative coding in R using:

The "for" loop
The across() function
The map() function from the purrr package

Be introduced to:

Communicating process and results using R Markdown

Practice the above!

2

Functions in R

What is a function?

A function allows you to efficiently save an operation you may have to use repeatedly,
and to run it while only having to modify its inputs, or arguments.

I want to rescale the vectors a, b, c, and d so that the smallest value is 0 and the largest
value is 1. Here's how I would do it in R:

(a-min(a, na.rm = TRUE)) / (max(a, na.rm = TRUE)-min(a, na.rm = TRUE))
(b-min(b, na.rm = TRUE)) / (max(b, na.rm = TRUE)-min(b, na.rm = TRUE))
(c-min(c, na.rm = TRUE)) / (max(c, na.rm = TRUE)-min(c, na.rm = TRUE))
(d-min(d, na.rm = TRUE)) / (max(d, na.rm = TRUE)-min(d, na.rm = TRUE))

This is not considered good coding; it requires a lot of copying/pasting, it increases the
number of opportunities to make a typo mistake, and it is not efficient.

3

Functions in R

Solution: custom functions. Custom functions in R are written in the following manner:

name <- function(arguments) {
 body
}

In the case of our reshaping function, it would look like this:

Example for the argument a:
(a-min(a, na.rm = TRUE)) / (max(a, na.rm = TRUE)-min(a, na.rm = TRUE))

reshape_function <- function(x) {
 (x-min(x,na.rm = TRUE)) / (max(x,na.rm = TRUE)-min(x,na.rm = TRUE))
}
reshape_function(c(-10, 0, 10))

[1] 0.0 0.5 1.0

reshape_function(c(1, 2, 3, 4, 5))

[1] 0.00 0.25 0.50 0.75 1.00
4

Iterative Functions in R

What if I want to apply the same function to multiple objects?

What if I wanted to apply reshape_function () to 30 variables in my dataset?
Rewriting it would be inefficient...

A possible, base R solution: use a "for" loop.

for(vector in list(c(-10, 0, 10), c(1, 2, 3, 4, 5))) {
 print(reshape_function(vector))
}

[1] 0.0 0.5 1.0
[1] 0.00 0.25 0.50 0.75 1.00

However, the use of "for" loops is discouraged in R because they have to run sequentially
through each element of the object. To loop over large objects, this is much slower than
alternative options, which directly apply to the whole object.

5

Iterative Functions in R

A more efficient solution: the function map() from the package purrr .

library(purrr)
purrr::map(
 .x = list(
 c(-10, 0, 10), c(1, 2, 3, 4, 5)
),
 .f = reshape_function
)

[[1]]
[1] 0.0 0.5 1.0

[[2]]
[1] 0.00 0.25 0.50 0.75 1.00

6

map_chr(
 c(1, 3),
 function(x) {
 x + 10
 }
)

[1] "11.000000" "13.000000"

map_chr(
 c(1, 3),
 ~ .x + 10
)

[1] "11.000000" "13.000000"

Iterative Functions in R

Notice that the previous chunk's output is a list. If you want to output a different class of
object, purrr has the functions map_chr() , map_dbl() , and map_df() amongst
others.

map() has a shorthand to simplify its use: instead of writing the function out, you can
replace function() {} with ~ and the function's argument with .x .

7

Iterative Functions in R

We can also apply map() to a data frame. If we do so, map() will apply the same
function to every component of the data frame, i.e. its columns. In practice, this is
equivalent to applying map() to a list of vectors.

library(palmerpenguins) # A fun practice dataset about penguins!
data(package = 'palmerpenguins')
Let's take a glimpse at the dataset:
penguins %>% glimpse()

Rows: 344
Columns: 8
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Ad
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge
$ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.
$ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190,
$ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475
$ sex <fct> male, female, female, NA, female, male, female, ma
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 20

8

Iterative Functions in R

I want to reshape the numerical variables of the penguins dataset. Using map() :

penguins_reshaped <- penguins %>%
 map_dfr(
 ~ if(is.numeric(.x)) {
 reshape_function(.x)
 } else {
 .x
 }
)
penguins_reshaped %>% glimpse()

Rows: 344
Columns: 8
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Ad
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge
$ bill_length_mm <dbl> 0.25454545, 0.26909091, 0.29818182, NA, 0.16727273
$ bill_depth_mm <dbl> 0.6666667, 0.5119048, 0.5833333, NA, 0.7380952, 0
$ flipper_length_mm <dbl> 0.15254237, 0.23728814, 0.38983051, NA, 0.35593220
$ body_mass_g <dbl> 0.2916667, 0.3055556, 0.1527778, NA, 0.2083333, 0
$ sex <fct> male, female, female, NA, female, male, female, ma
$ year <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 09

Iterative Functions in R

The dplyr package offers us a function that makes it much easier to modify multiple
dataset columns at once: across() :

penguins_reshaped <- penguins %>%
 mutate(
 across(
 c(bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g),
 ~ reshape_function(.x)
)
)
penguins_reshaped %>% glimpse()

Rows: 344
Columns: 8
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Ad
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge
$ bill_length_mm <dbl> 0.25454545, 0.26909091, 0.29818182, NA, 0.16727273
$ bill_depth_mm <dbl> 0.6666667, 0.5119048, 0.5833333, NA, 0.7380952, 0
$ flipper_length_mm <dbl> 0.15254237, 0.23728814, 0.38983051, NA, 0.35593220
$ body_mass_g <dbl> 0.2916667, 0.3055556, 0.1527778, NA, 0.2083333, 0
$ sex <fct> male, female, female, NA, female, male, female, ma
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2010

across() identifies columns by name, or can be combined with where() to identify
columns by their class. The following are equivalent:

penguins %>%
 mutate(
 across(
 c(bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g, y
 ~ reshape_function(.x)
)
)
penguins %>%
 mutate(
 across(
 matches("length_mm|depth_mm|body_mass|year"),
 ~ reshape_function(.x)
)
)
penguins %>%
 mutate(
 across(
 where(is.numeric),
 ~ reshape_function(.x)
)
)

11

Iterative Functions in R

Beyond the scope of this class: sometimes we want to iterate functions that have more
than one argument.

To do so, purrr provides the following functions: map2() (two arguments) and
pmap() (unlimited arguments)

animals <- c("tiger", "elephant", "giraffe")
colors <- c("red", "orange", "blue")
map2(# paste0() concatenates its arguments into a single string
 animals, colors, ~ paste0("The ", .x, " is ", .y, ".")
)

[[1]]
[1] "The tiger is red."

[[2]]
[1] "The elephant is orange."

[[3]]
[1] "The giraffe is blue."

For more on iterative functions, I strongly recommend this blog post by Rebecca Barter. 12

https://www.rebeccabarter.com/blog/2019-08-19_purrr

A (Quick) Introduction to R Markdown

RStudio comes with a text and code compiler that allows you to craft narrated scripts,
slide decks, blogs, books, and more: R Markdown.

Instead of creating an R Script, you can select "R Markdown" when creating a new
document in RStudio.

R Markdown allows you to use the "markdown" markup language to format your text,
while include code and outputs using code "chunks":

13

https://commonmark.org/help/

A (Quick) Introduction to Quarto

Quarto is a brand new publishing system from the RStudio creators, intended to improve
on R Markdown. It allows to combine different coding languages (e.g. both R and Python)
into reports, slide decks, websites, etc.

See https://quarto.org/ for more information.

14

https://quarto.org/

Practical Exercise — Using the World

Values Survey Dataset

15

Social values, attitudes &
stereotypes
Societal well-being
Social capital, trust and
organizational membership
Economic values
Corruption
Migration
Post-materialist index

Science & technology
Religious values
Security
Ethical values & norms
Political interest and political
participation
Political culture and political
regimes
Demography

World Values Survey

Background

"The survey, which started in 1981, seeks to use the most rigorous, high-quality research
designs in each country. The WVS consists of nationally representative surveys
conducted in almost 100 countries which contain almost 90 percent of the world’s
population, using a common questionnaire. [...] WVS seeks to help scientists and policy
makers understand changes in the beliefs, values and motivations of people throughout
the world."

Survey Contents

16

Today's practical component

1. Successfully fix the code in the session_4.R script.

2. Work on your final assignment! The final assignment is to complete the Session 2,
3, and 4 challenges. You can find the challenges rewritten together on the next
slide.

NOTE — You should refer to documentation for the dataset, which can be found at
https://mfiorina.github.io/sais_r_course/

17

https://mfiorina.github.io/sais_r_course/

End of Course Assignment (Due on Wednesday,

April 30)

Using child_values_country_data, create a scatter plot showing an interesting
comparison between two child values across countries.

Using child_values_continent_data, create a bar plot comparing a specific child value
across continents.

Using child_values_continent_data, create a gt table showcasing the same data as in
your bar plot.

18

Session 2 Challenge Session 3 Challenge Session 4 Challenge Overall

https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-3-challenge#panelset_001_session-3-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-4-challenge#panelset_001_session-4-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=overall#panelset_001_overall

End of Course Assignment (Due on Wednesday,

April 30)

Create your own script and do the following:

1. Find mean values for 'importance in life' variables (Q1-6) for countries in another
region than Europe

2. Calculate average 'enthusiasm' for these life subjects in countries in that non-
Europe region

3. Perform the same analysis, either on European countries or other countries, for one
of the following group of indicators in the dataset:

Important child qualities: Q7-18
Neighbors: Q19-26
Statements to agree with: Q27-41

4. Save one dataset for each of the tasks above.

18

Session 2 Challenge Session 3 Challenge Session 4 Challenge Overall

https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-2-challenge#panelset_001_session-2-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-4-challenge#panelset_001_session-4-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=overall#panelset_001_overall

End of Course Assignment (Due on Wednesday,

April 30)

CHALLENGE 1 — You are going to use the map() function to rewrite the data importing
code below. Currently, the code loads year-by-year datasets individually and then uses
bind_rows() to bring them together. Modify it to use map() and list_rbind() instead.
Remember to use help(...) if you're unsure how a function works.

CHALLENGE 2 — You are going to rewrite the data wrangling section from Session 3,
replacing repetitive code with more efficient uses of the across() function. Hint — Steps
1, 2, and 5 shouldn't be affected. Focus on rewriting Steps 3 and 4 to be more efficient.

18

Session 2 Challenge Session 3 Challenge Session 4 Challenge Overall

https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-2-challenge#panelset_001_session-2-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-3-challenge#panelset_001_session-3-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=overall#panelset_001_overall

End of Course Assignment (Due on Wednesday,

April 30)

Final deliverable: a .zip file of the the "your name R Course Final Assignment" folder. It
should have the following:

An .rproj file in the main folder.

"code", "data", and "output" folders.

Three scripts in the "code" folder: session_2_assignment.R ,
session_3_assignment.R , and session_4_assignment.R . You can use the
session_2.R , session_3.R , and session_4.R scripts as foundations for your
assignment scripts.

The requisite data in the "data" folder. You should just need the data from the three
sessions, which you should have already downloaded.

The outputs from your session_2_assignment.R script in the "output" folder. x

18

Session 2 Challenge Session 3 Challenge Session 4 Challenge Overall

https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-2-challenge#panelset_001_session-2-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-3-challenge#panelset_001_session-3-challenge
https://mfiorina.github.io/sais_r_course/slides/session_4/session_4.html?panelset_001=session-4-challenge#panelset_001_session-4-challenge

Course Feedback

https://forms.gle/TbaSCbqqKAfpjtF59

19

https://forms.gle/TbaSCbqqKAfpjtF59

Links

Hadley Wickham, Mine Çetinkaya-Rundel & Garrett Grolemund, R for Data Science, 2e —

Custom Functions

Hadley Wickham, “dplyr 1.0.0: working across columns”

Rebecca Barter, "Learn to purrr"

RStudio, RStudio Cheatsheets

20

https://r4ds.hadley.nz/functions
https://r4ds.hadley.nz/functions
https://www.tidyverse.org/blog/2020/04/dplyr-1-0-0-colwise/
https://www.rebeccabarter.com/blog/2019-08-19_purrr
https://www.rstudio.com/resources/cheatsheets/

Explore R Further

More Complex Data Manipulation

Iterative coding (using loops for repetitive code) – purrr ’s map function is your friend. I
recommend Thomas Mock, “Functional programming in R with Purrr” to get you started.

User-made functions in R – At some point, it will become time-effective to create your
own functions to apply to your work. Hadley Wickham, Advanced R Chapter 6 –

Functions.

Publishing Your R Work

RStudio, “Introduction to RMarkdown”. Summarizes the uses and utility of the
RMarkdown framework.

Yihui Xie, “xaringan Presentations” – book chapter and presentation. Introduction to
xaringan , a package that allows you to create slide decks using R. Also explore the
xaringanExtra package.

With RMarkdown, create books using bookdown or a blog using blogdown.

21

https://themockup.blog/posts/2018-12-11-functional-progamming-in-r-with-purrr/
https://advr.hadley.nz/functions.html
https://advr.hadley.nz/functions.html
https://rmarkdown.rstudio.com/lesson-1.html
https://bookdown.org/yihui/rmarkdown/xaringan.html
https://slides.yihui.org/xaringan/
https://pkg.garrickadenbuie.com/xaringanExtra/#/
https://bookdown.org/
https://bookdown.org/yihui/blogdown/

Explore R Further

Data Visualization Using Plots

The R community organizes “Tidy Tuesday”. This is a weekly challenge where users are
provided a dataset and participants then swap graphs and scripts used to create their
visualizations.

David Robinson’s Tidy Tuesday live screencasts on YouTube. The perfect resource to
follow along and try to replicate a professional coder’s scripts.

Yan Holtz and Conor Healy, “From Data to Viz”. An amazing repository of methods to
create different data visualizations using R.

22

https://www.tidytuesday.com/
https://www.youtube.com/user/safe4democracy
https://www.data-toviz.com/

Explore R Further

Geospatial Data Visualization

Robin Lovelace, Jakub Nowosad, and Jannes Muenchow, Geocomputation with R. A
great introduction to manipulating geospatial data (shapefiles and rasters) in R.

Edzer Pebesma, “Simple Features for R”. An introduction to the sf package, commonly
used for geospatial work in R.

Edzer Pebesma, “Plotting Simple Features”. How to use sf and ggplot2 to visualize data
using maps.

23

https://geocompr.robinlovelace.net/index.html
https://rspatial.github.io/sf/articles/sf1.html
https://rspatial.github.io/sf/articles/sf5.html

Explore R Further

For those interested in conducting data work in the development world: Kristoffer
Bjarkefur, Luiza Cardoso de Andrade, Benjamin Daniels, and Maria Ruth Jones,
Development Research in Practice – The DIME Analytics Data Handbook. A
comprehensive account of tools and instruments to conduct quantitative development
research.

For those looking for more hands-on, real-world data work: Ben Baldwin, “A beginner’s

guide to nflfastR”. How to download and explore NFL play-by-play data. This is how I
learnt how to use R. Further tutorials using this data can be found at the “Open Source

Football” blog.

24

https://worldbank.github.io/dime-data-handbook/
https://www.nflfastr.com/articles/beginners_guide.html
https://www.nflfastr.com/articles/beginners_guide.html
https://www.opensourcefootball.com/
https://www.opensourcefootball.com/

